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The formation of transient peptide-protein and protein-protein
complexes is an essential part of many biological processes. Well-
established NMR techniques, based on intermolecular1H-1H
dipolar interactions (the nuclear Overhauser enhancements (NOEs)),
are being used extensively in studies of the contact surfaces and
structures of relatively stable complexes.1 For sufficiently short-
lived complexes, where the NOE approach cannot be applied, the
much stronger electron-nucleus dipole interaction can be exploited
if at least one of the interacting molecules is paramagnetic. This
was demonstrated in an elegant study of the interaction between
cytochromef and plastocyanin,2 where the changes in chemical
shift of plastocyanin nuclei upon binding to paramagnetic cyto-
chrome f were used to determine the structure of the complex.
However, even this approach fails for more short-lived complexes
where the intermolecular interaction is nearly diffusion controlled,
as in the electron self-exchange process of plastocyanins, or in the
initial stage of the electron transfer between cyanobacteria plasto-
cyanins and cytochromef.3,4

Here an NMR approach is presented that can detect short-lived,
transient interactions between two protein molecules, usingAna-
baenaVariabilis (A.V. PCu) plastocyanin and the electron self-
exchange between its reduced (diamagnetic) and oxidized (para-
magnetic) forms as an example. The interaction is monitored by
the intermolecular paramagnetic contribution to the longitudinal
relaxation of protons at or close to the contact surface. Not only
the unpaired electrons of the parent molecule but also those of the
interacting molecule may affect the relaxation of these protons.
However, unlike the first-mentioned effect the latter is concentration
dependent and can, therefore, be detected by the concentration
dependence of the nuclear relaxation rates.

The paramagnetic relaxation enhancement,R1p, of protons more
than about five bonds from the paramagnetic ion is caused only by
the modulation of the dipolar spin-spin interaction between the
nuclei and the unpaired electrons, e.g. the unpaired Cu2+ electron,
and is to a good approximation given by5,6

Here∆2 ) r-6 if the point dipole approximation applies,5 r being
the geometric distance between the nucleus and the unpaired
electron, whileτc,1 is the correlation time for the modulation of the
electron-nucleus dipolar interaction.7 The parametersµ0, S, geff,
µB, γI, andωI are defined in ref 7.

The observed longitudinal relaxation of the nuclei can be affected
by chemical exchange processes,8 e.g. the electron self-exchange

(ESE). If the process is sufficiently fast, as in the case of the electron
self-exchange ofA.V. PCu, the longitudinal relaxation of the protons
is single exponential,9 and the rates obtained from the exchange-
averaged signals are given by9-11

Here R1d is the longitudinal relaxation rate in the diamagnetic
species,R1p is the longitudinal paramagnetic relaxation enhance-
ment,keseis the second-order rate constant for the ESE process,fp
is the molar fraction of the oxidized species, andc is the total
concentration of the protein.

The R1d and R1p rates of 40R-protons inA.V. PCu12,13 were
obtained from IR-TOCSY experiments14,15 by a least-squares fit
of eq 2 to the signal recoveries, as shown in Figure 1. The rates of
the remainingR-protons could not be obtained because the protons
are too close to the paramagnetic center or because of severe signal
overlap. To ensure a high precision, each rate was determined from
more than one sample, using samples with differentfp as shown in
Figure 1.

The concentration-dependent relaxation enhancements,∆R1p,
observed inA.V. PCu are shown in Figure 2. Significant enhance-
ments are found for about one-third of the observedR-protons,
clearly showing that interactions take place between individualA.V.
PCu molecules. Moreover, as shown in Figure 3 the concentration-
dependent enhancements are confined to certain regions on the
surface of the molecule, indicating that the interactions are specific.
Thus, the residues 95 and 34, which are part of the hydrophobic
patch on the “north side” of the molecule, have significant∆R1p
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Figure 1. ObservedR1 relaxation rates of theR-protons of residues (A)
D44 and (B) F43 inA.V. PCu at (O) 1.1 mM and (0) 3.2 mMA.V. PCu, for
different fractions of the oxidized species. The straight curves correspond
to a least-squares fit of eq 2 to the relaxation rates, usingkese) 186( 13
mM-1 s-1 as determined previously.11 Both R-protons are close to the fast
exchange regime, i.e. eq 2 reduces toR1 ≈ R1d + fpR1p.8 For residue D44
(A) the paramagnetic relaxation enhancement,R1p, clearly depends on the
concentration of the protein. For residue F43 (B) no concentration
dependence ofR1p is observed.
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values. Similar observations are made for the residues 42, 44, 60,
61, and 73 that are located on the “eastern face” of the molecule.
These results indicate that the two regions are engaged in
intermolecular interactions, which may be important for the electron
self-exchange taking place in the sample. Interestingly, recent15N
NMR relaxation studies of the backbone dynamics ofA.V. PCu
showed an increased mobility on the microsecond-millisecond time
scale for both of these regions,16 in accordance with the general
observation that active regions of proteins often have enhanced
mobility. Moreover, recent site-directed mutagenesis studies indicate
that both regions are involved in the interaction ofPhormidium
laminosum(P. laminosum) plastocyanin4 with cytochromef. Further
support of an eastern interaction surface is provided by the crystal
structure of this plastocyanin17 where both H61 and D44 are located
at the crystal packing surfaces of the crystal trimer. Finally, it is
worth noticing that none of the interior protons observed here shows
concentration-dependent relaxation enhancements.

In conclusion it is shown that paramagnetic longitudinal proton
relaxation can provide detailed information about short-lived,
transient protein complexes where the intermolecular interactions
are close to the diffusion limit. For the specific case ofA.V. PCu
two regions of interaction were identified. These regions may serve
as the contact surfaces in the electron exchange process. This is
supported by an increased mobility on the microsecond-millisecond
time scale of these regions,16 by the functional importance of the
corresponding regions inP. laminosumplastocyanin,4 and by the
crystal structure ofP. laminosumplastocyanin.17
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Figure 2. Observed concentration-dependent paramagnetic relaxation
enhancements,∆R1p ) R1p (3.2 mM)- R1p (1.1 mM), ofR-protons inA.V.
PCu. The relaxation rates were not obtained for residues without error bars
(see text). Residues 42-44 are located in aâ-sheet, where theR-protons
of 42 and 44 point toward the surface, while theR-proton of 43 points
toward the core of the protein. Therefore, only the paramagnetic relaxation
of 42 and 44 is enhanced.

Figure 3. NMR solution structure ofA.V. PCu (PDB entry 1FA4). Regions
with concentration dependent paramagnetic relaxation enhancements,
∆R1p ) R1p (3.2 mM) - R1p (1.1 mM) of theR-protons are colored; red,
∆R1p > 2 s-1; yellow, 1 s-1 < ∆R1p e 2 s-1; green, 0 s-1 < ∆R1p e 1 s-1;
blue σ(∆R1p) > ∆R1p, σ(∆R1p) being the experimental error.
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